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Abslracl. Periodic orbiu in a dispersing billiard v l e m  mnsisting of three dxular 
arcs are Studied numerically bj using a parlial mding mle together with an efficient 
method for enumerating periodic orbiu on the real billiard plane. By examining weral  
slarimical measures, it is shown that the length spectrum and the stabilily uponenu arc 
highly unmmlatd. 7he wlidily of Ihe e m i c l a r ~ i d  trace fnlmu!? is also laled: and a 
remarkable agreemen1 of Ihe semiclassical and quantum density of stales is obtained at 
least for about the lower 15 levels. 

1. Intmduction 

Dynamical systems with more than one degree of freedom demonstrate surprisingly 
complicated behaviour, an understanding of which is well developed at least in clas- 
sical mechanics. Recent advance in the study of classical dynamical systems reveals 
that there are distinctive or hierarchical classes such as ergodicity, mixing and the 
Bernoulli property, even within systems showing chaotic behaviour [l]. On the other 
hand, a full understanding of the quantum system whose classical counterpart displays 
chaos is iar from accompiished. Even when we restrict ourseives to strongiy chaotic 
or ergodic systems where no KAM ton or islands exist in the phase space, we have 
not yet found a complete answer to various conjectures regarding the universality of 
level statistics, characteristic nature of wave functions, and so on [2]. Hence, before 
analysing generic Hamiltonian systems with complicated phase space structure, we 
should investigate the extremely chaotic case as a first step. 

rule from the language of classical mechanics to that of quantum mechanics. For 
this purpose, the semiclassical method usually plays an important role and provides 
us with a powerful tool. In particular, Gutzwiller's trace formula which relates a set 
of classical periodic orbits including their stability to the quantum energy levels, has 
been a central subject in the analysis of this issue 131. However, due to our lack of 
h.c.v!edge, e;e~ i~ th.e ccmerica! sense, coficemlfig pcrindic orbits nf chc!~!ic ?stem, 
it is difficult to get a clear perspective on the quantum4assical correspondence in 
strongly chaotic systems. Ib attack this kind of difficulty, there are be two different 
approaches. One is to obtain analytically a complete set of periodic orbits by choosing 
an appropriate model [4-71, and the other is to calculate periodic orbits numerically 
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by brute force [8,9]. The drawback of the former approach is that due to the 
specificity of the model system, the resulting length spectrum often becomes non- 
typical, although it gives a precise asymptotic behaviour that we really how.  Since 
the numerical calculation can handle only finite data, the latter approach cannot 
generate all periodic orbits, but it keeps the generality of the system. 

In the present article, we will take the latter approach by studying a dispersing 
billiard problem [lo]. The advantage of the billiard problem is that the classical prop 
erties are easily controlled by designing the shape of the boundary, and that periodic 
orbits can be obtained by geometrical speculation. In particular, our dispersing billiard 
system introduced in section 2 has several system parameters which do not change 
the category of classical dynamics. It enables us to explore universal aspects of peri- 
odic orbits independent of a special shape of the boundary. In addition, as is shown 
in section 3, our dispersing billiards have a rather good correspondence between a 
sequence of codes and a periodic orbit, which markedly excludes the possibility of 
missing periodic orbits. Combining this nice property with the efficient numerical 
method proposed below, we have succeeded in obtaining several thousand periodic 
orbits, and examined their statistical properties from various viewpoints. Using these 
periodic orbits, we also tested the validity of the semiclassical trace formula for this 
type of dispersing billiard and discuss the problems posed by the present analysis. 

T Harayania and A Shudo 

2. The dispersing billiards 

The billiard problem in classical mechanics is the study of the motion of a particle 
which moves freely within a region D with a constant energy and satisfies the law of 
reflection at the boundary a D ,  the angle of incidence being equal to the angle of re- 
flection. The corresponding quantum mechanical problem is the study of eigenvalues 
and eigenfunctions of the time-independent Schrodinger equation which describes the 
stationary states of a particle in D 

with Dirichlet boundary condition, 

$ ( q ) = O  q E a D .  

The dispersing billiard which we shall be interested in here h a class of billiard 
systems having boundaries with curvature measured by inner normal positive every- 
where. The boundary of our model billiards consists of three circular arcs ro, rl and 
T2 as shown in figure 1. Each arc intersects at vertices A,  B and C of a triangle, and 
the centre of each circle, which is not shown in figure 1, is given as the vertex of an 
equilateral triangle. The independent geometrical parameters which we can control 
are the length R of the base, the base angles C$20 ,  &, of a triangle ABC, and the 
base angles ao. al and a2 of the equilateral triangles. The reasons for employing 
this type of dispersing billiard are mainly twofold; (1) Several rigorous results con- 
cerning the corresponding classical dynamics have already been derived. (2) Generic 
or universal properties can be extracted by studying several sets of system parame- 
ters systematically. Our main aim in this paper, therefore, is to analyse properties 
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Figure 1. Schematic picture of a dispening billiard 
system whose boundary mnsism 01 lhree dlrular 
arm 

of periodic orbits and the validity of the semiclassical theory of such classically well 
examined Systems in a systematic manner, which has never been done before. 

This shape of billiard includes several characteristic cases as particular sets of 
system parameters. For example, if the circular arcs meet tangentially, the power 
law decay of the auto-correlation function for the velocity of classical trajectories is 
observed 1111, and if the radius of the three circles are infinite, it becomes a polygonal 
billiard system which does not show exponential instability despite its non-integrability 
112,131. However, our present concern is not to study such special classes, but to ex- 
amine a generic hyperbolic case not having an anomalous nature in classical dynamics. 
As is rigorously shown, this class of dispersing billiards have ergodic property and is a 
K-system [14]. Furthermore, it is isomorphic to the Bernoulli shift [U]. This means 
that the Lyapunov exponent of the system is positive. An important point is that 
the method for constructing the Markov partition has been obtained, and it shows 
that a countable but infinite number of partitions are necessary [16,17]. It makes 
it difficult to code periodic orbits using a finite number of symbols, which prevents 
us from directly applying the curvature expansion method proposed by Cvitanovic 
and Eckhardt [18]. As is naturally expected from the properties mentioned above, 
the number of periodic orbits proliferates exponentially. There is actually a rigorous 
proof which shows that both the lower and upper bound of such a proliferation rate 
is given as an exponential function [17]. 

3. Coding of periodic orbits 

The most favourable point of our billiard system is that there exists a rather simple 
way of coding each periodic orbit, which considerably diminishes our labour finding 
periodic orbits, and ensures the upper bound of the number of periodic orbits when 
the bounce number is given. Following the argument made by Morita 1191, we here 
show that each periodic orbit y ,can be coded uniquely by the symbolic sequence 
[ (Y)  E C, where E = {t  = (Cj)iZym E n;-,{O,l,z) I Cj # C j + l  for any j } ,  
and we represent the bounce at each circular arc To, TI, and Tz by the symbol 0, 1 
or 2 

First consider an orbit which reflects at a point P on the arc TI, and then reflects 
at a point PI on the arc Tz. Define P as the distance between the points P and 
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a vertex C measured along the arc rl and 4 as the angle between the inner unit 
normal vector and the momentum vector going out from the point P,. r1 and 4, 
are defined in the same manner. From geometric consideration, one can obtain 

T Harayama and A Shudo 

- _  
d r  cos (3.1) 

where 7 is the Euclidean distance between the points P and P, and k(r) is the 
geometric curvature of the arc r at the point P. For the consecutive reflections, 
( y o ,  bo) ,  (rl, 4, ), . . . , ( r , ,  4" ), we obtain 

where 

b j =  [ l + 2 ( d Q , + k ( r j ) ) ] .  cos+j d r j  (3.3) 

Similar geometrical consideration yields 

dbj/ldrj ( j  = 1 , 2 ,  ... ,n) is non-negative if d4,/drO 2 0 is satisfied. Since 
2 0 and k ( r j )  2 0, there exists q > 0 such that 

b j > l + q  j = O , l ,  ..., 7 1 - 1 .  (3.5) 

Hence, in order to make two different orbits which are initially on the same arc trace 
the same history of codes within n steps, the following relation must be satisfied 

P(  P, P')  <I cos c$o 1-1 f( 1 + q)-" (3.6) 

where r( P, P') is the initial distance between different points P and P' and 1 is the 
minimum arc length. Because we are now concerned only with periodic orbits, this 
inequality leads us directly to the conclusion that the order of reflections at the arm, 
or the sequence of codes, determines a unique periodic orbit. Of course, in this ar- 
gument, it is implicitly assumed that there exist no periodic orbits passing tangentially 
a point on the arc. Even when such periodic orbits exist, a slight deformation of 
the boundary changes them into non-tangent ones. It ensures the uniqueness shown 
here. At this point, we should remark that this correspondence between a sequence 
of codes and a periodic orbit on the billiard plane is not necessarily One-to-one, 
while there exists a strict one-to-one correspondence between them in the case Of 
non-compact dispersing billiards [20]. In calculations performed below, we actually 
found many sequences of codes which do not have a corresponding periodic orbit. 
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4. The method of finding periodic orbits 

The procedure of searching for periodic orbits is divided into two parts. The first 
task is to generate all the symbolic sequences without omission, and the second 
one is to find the corresponding periodic orbits on the real billiard plane. One 
effective method for generating the symbolic sequence ( ( 7 )  is as follows: first we 
prepare the binary expression for 2" integers, IC = 0,1,. . . ,2" - 1, i.e. li = 
a, x 2"-' + a2 x 2"-: + ' . + a, x P ,  and then generate the sequence u1 u 2 . .  . U,, 
by the rule given as U, = E;=,(., + 1) (mod 3). By construction, this sequence 
satisfies the prohibition rule as U, # u,+~. The second step is to discard the sequences 
not satisfying the condition U,, = uN, and finally the sequences obtained by the 
permutation of others or the repetition of smaller periodic sequences are excluded. 

Once a symbolic sequence u I u z .  . . U,, is given, the remaining procedure to obtain 
periodic orbirs on the reai biiiiard piane is to find a ciosed poiygon wnose vertices 
are on the corresponding arcs, and at the same time its perimeter is the smallest of 
all possible configurations. The reason for the second requirement is that since the 
curvature of the boundary is everywhere positive, there are no conjugate poinu on 
the billiard table. It is, of course, equivalent to the law of reflection. More precisely, 
a desirable polygon must satisfy the following set of equations 

where is the distance between the points Poj and Po.+, and rvj is the 
distance between the point Puj and the point C measured along the boundary. 
These equations are usually solved by a Newtonian method [21]. However, in the 
present model, there exists a number of spurious solutions which satisfy the condition 
of extremum, but do not yield true periodic orbits. They correspond to stationary 
polygons, at least one of whose vertices is outside the billiard boundary while each 
vertex of such stationary polygons is located on one of the three circles constituting 
the boundaly. These stationary polygons satisfy the minimax condition instead of the 
mhimum one: Thereforei un!ess initia! p o i m  are incidentally located near a true 
solution, much computing time is required to get a final solution. 'Ib avoid this, we 
use the following technique. 

We first put a set of points {Pi;') on the corresponding arc ruj.  The points 
Pit) and Pi:) being fwed, Pi:) is determined by solving equation (4.1) for the case 
j = 1 using a Newtonian method. As is shown in figure 2, because always 
exists on the arc X Y ,  soiving equation (4.i) is not dilftcuit. in the same manner, 
Pi? and Pi:) being fixed,PJ:) is determined. This procedure is repeated until 
Pit) is determined. By considering this procedure as one step, we make the next- 
step optimization starting from the preceding configuration { P i : ) ) ,  and then obtain 
a set of more optimized points { P i : ) ) .  As points {PLY)) are always located on 
the h n u n d q  nf bi!!iardsj three circular arcs, one does not suffer from s p u r i ~ t s  
solutions mentioned above. From the preceding argument, the converged points 
Pi:) = limn-- PLY) form periodic points which correspond to a given sequence of 
codes {uj}. In our experiments, when the maximal displacement between successive 
steps, i.e. maxUj I Pi;) - PLY-') 1 is smaller than e = lo-', we judge the points 
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{ P g ) ]  to have converged. In actual computations, the upper limit of the step number 
n is set at 1ooO. In several cases where there exists no periodic orbit corresponding 
to the symbolic sequence, the points P., and P,,+, converge slowly to the Same 
point at which the arcs Tm, and re,+, intersect one another. Therefore, we regard 
such a symbolic sequence as having no corresponding periodic orbit, and we give the 
criterion for halting our search as Lo>,>+, < 

T Harayama and A Stiudo 

~ i g u r e  2. A stationay point on the arc XY. 

5. The property of periodic orbits ond its universolity 

Using the method explained in the preceding section, we examined several cases by 
changing the value of an angle a2 from g7r to ET with other system parameters 
R = 0.01, = ;7r, = 1311, 42 a, = &7r and ai = In being fixed. The 
minimum reflection number of periodic orbits in this billiard system is 3, and the 
maximal period we searched is 20. Within the above criterion, the percentage of 
symbolic sequences whose convergency cannot be judged is approximately 1%: and 
several thousand primitive periodic orbits were eventually obtained. The result is 
tabulated in table 1. There are, in general, two types of periodic orbits; the first 
type is a class of orbits which retrace their own trajectories in the reverse direction 
before they return back to their initial configuration. The second type are ones not 
tracing their Own trajectories before they close. Therefore, the sequence of codes 
for periodic orbits of the first type is necessarily symmetric about a central code. 
An example of this is illustrated in figure 3(c). On the other hand, the sequence 
of mdes for the second type do not have such a symmetry. Spica1 examples are 
actually presented in figures 3(n) and 3(b). Using the present method of generating 
the sequence of mdes and for the periodic orhits of the second Vpe, two different 
mdes, either one of which is reversed to give the other, yield periodic orbits with the 
Same topology on the billiard plane. In order to avoid the double-counting of periodic 
orbits with the same topology, these pairs of periodic orbits of the second type are 
identified and the number of periodic orbits with different topology are listed in table 
2 Because the curvature of 1', increases as CY? decreases, neighbouring orbits diverge 
more rapidly due to the reflection at this boundary r2, and thus the system exhibits 
stronger chaos. This means that the variety of periodic orbits with different topology, 



Periodic orbils and semiclassical quantization of dispersing billiards 4601 

which mrrespond to the symbolic sequences not having corresponding periodic orhits 
at larger d u e s  of az,  is increased. This is the reason why in table 1 the number of 
periodic orhits increases as a2 decreases. 

For the latter set of primitive orbits shown in table 2, we first examined the 
cumulative density of length spectrum, N ( 1 )  = a (  primitive periodic orbits y with 
length 1, < 1 ) .  The result is shown in figure 4. In the present procedure, periodic 
orbits are obtained in order of the reflection number, while the order of reflection 
number is not necessarily the same as that or their Icngth. Accordingly, to observe the 
precise behaviour of the cumulative density, we employed the periodic orbits ranging 
from 50 to 8ooo in order of their length. In this range, there were no omissions of 
periodic orbits as the order of length. As is expected from the result of the systems 
with a finite number of Markov partitions [19,u)], N ( 1 )  can be approximated very 
well by the exponential curve asymptotically. Figure 4 provides clear evidence for 
this prediction. Values of h which is the exponent of the exponential distribution, 
N ( 1 )  = constant  x e h ’ ,  are shown in figure 5. In this expression, h represents 
topological entropy which measures the variety of orbits. From the relation between 
the value of a2 and the number of periodic orbits, we can understand that in figure 5 
h increases as a2 decreases. This exponential prolikeration law is of course the 
crudest information about the length spectrum, and it directly reflects the chaoticity 
of classical dynamics. However, except for the work of Sieber and Steiner [9], little is 
known regarding fluctuation properties of the length spectrum for the planer billiard. 
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lhble 1. Numbers of periodic orbits 

n sf2.1 s f 2 . 2  s f 2 . 3  sf2.4 s f2 .5  nf2.6 sfz .7  

3 2 2 2 2 2 2 2 
4 3 3 3 3 3 3 3 
5 6 6 6 6 6 6 6 
6 1 4 5 7 8 8 8 
7 6 10 10 10 14 16 16 
8 11 13 17 17 18 20 22 
9 a 22 26 36 36 38 ?a 

10 25 36 46 60 61 62 68 
11 M 66 82 92 100 110 122 
12 82 102 135 151 167 192 205 
13 136 188 248 280 318 350 378 
14 228 311 406 492 569 613 676 
15 368 528 706 862 1014 1118 1208 
16 601 895 1223 1498 1780 1992 2186 
17 1022 I568 2158 2698 3176 36w 3998 
18 1710 2701 3751 4819 5685 6477 7236 
19 2888 4638 6592 8598 10294 11782 13040 
20 4850 7984 11605 15226 18525 21365 23735 

12009 19077 27021 34857 41776 47760 52947 

lhbk 2. Numbers of periodic orbils (orbits wilhoul lime rever~al ymmelry idenlified). 

n s f 2 . l  af2 .2  s f 2 . 3  -12.4 rrf2.5 sf2.6 s f2 .7  

3 1 1 1 I 1 1 1 
4 3 3 3 3 3 3 3 
5 3 3 3 3 3 3 3 
6 1 4 5 7 8 8 8 
7 3 5 5 5 7 8 8 
8 7 9 11 I1 12 14 16 
9 10 11 13 18 18 19 19 

10 19 26 33 41 42 43 46 
11 ?3 33 41 46 50 55 61 
12 49 62 79 89 99 115 124 
13 68 94 124 140 159 175 189 
14 1 33 181 233 279 323 35 1 U17 
15 184 264 U3 43 I 507 559 604 
16 330 488 Mi4 81 I 960 1074 1180 
17 511 784 1079 1349 1588 1803 1999 
18 914 1432 1975 2529 2982 3400 3194 
19 1444 2319 3296 4299 5147 5891 6520 
20 2521 4124 5984 7829 9519 10980 12193 

6226 9855 13902 17891 21428 2455M 27155 

If we wish to understand, by using Gutmiller’s trace formula, the universality Of 
the quantum spectrum from that of the classical length spectrum, we must know 
more detailed information with respect to the generic features of the periodic orbits. 
As mentioned in the introduction, the advantage of our dispersing billiard is that a 
generic property of the length spectrum can be inferred by changing several System 
parameters in various ways. 
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Flgvre 4 Cumulative densily function N ( 1 )  of the length spectrum in lhe case of 
(12 = af2 .4  fitted by the aponenliill prolifelalion law. eh' for h = 1.723 x 10'. (a) 
linear sale. (b) logarithmic a l e .  

::I, , , , , , , , , , , '..?i 
140 

1. 2 1.3 1. 4 1 .5  

a ,  Flgure 5. lbplogical entropy h ( o 2 )  

As a f is t  step in exploring such a generic feature, we studied the nearest neighbour 
spacing distribution of the iength spectrum. By foiiowing the procedure developed in 
the study of quantum energy spectra, we use the averaged cumulative density obtained 
numerically to unfold the original spectrum. The result is shown in figure 6. The 
numerical histograms agree surprisingly well with the exponential curve, or Poisson 
distribution, which implies that the length of periodic orbits are uncorrelated at least 
within the short range. Every set of system parameters we have studied yield a 
Poison distribution as shown in figure 6 though the iength spectrum iiseii depends 
on the system parameter and is quite ditferent from one to another. Therefore, we 
conjecture that this property is universal for all hyperbolic billiard systems. 

In order to check, from the statistical viewpoint, how far the length spectrum 
of strongly chaotic systems is correlated or uncorrelated, we must know information 
about higher-order correlations for the length spectrum. In the analysis of the energy 
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F e r -  6 Nearest neighbour spacing dislribulion 
P(a)  for the length speclrum. The broken C U N ~  

Rpresents the Poisson dislribulion P ( 8 )  = e-". 

L 
Figure 7. Spcclral rigidity Ax in lhe case of cq = 
n12.4. 

level statistics, the quadratic long range correlation, such as A,- or C,-statistics, 
is most familiar and it is easily accessible by numerical computations. TO test the 
quadratic correlation of the length spectra, we here examined the spectral rigidity A3 
defined by 

1 p + L / 2  
A,( L, z) min [ ? L ( E )  - A€ - Bl'dt 

L A , B  J z - L l 2  

where n ( ~ )  is the unfolded cumulative density of states. If a sequence does not have 
any correlation, A3 statistics should fit the straight line with the gradient 1/15. In 
the energy level sequence of classically integrable systems, it saturates in the long 

exists a minimum length for periodic orbits 1221. On the other hand, as is actually 
shown in figure 7, numerical examinations demonstrate that the length spectrum of 
periodic orbits shows no sign of saturation, but it fits the straight line predicted 
for completely uncorrelated sequences well. For the cases with different system 
parameters, no noticeable difference is found. Therefore, we expect that there is no 
yuaura,w wI,*,a.LI"I, "*L"L..cII L l l r  1 C " & L L L  " p * L 1  U,,, "L "JpC1YY1Lc V l l l l Y l "  OJ.7,C"". 

Another universality we expect is the distribution P,,(1) of the length of the 
primitive periodic orbits with the reflection number n being fied. Because nearest 
neighbour spacings of the length spectrum have no correlation and the length of 1 of 
a periodic orbit increases as the reflection times n increases, 1 can be expected to be 
randomly distributed around the mean kngth dependent on n. AE shown in figure 8, 

regime, T.e feBson ihij ndiuiaiion ui enef~-y ievei ~ q ~ u e i , ~  ihere 

-....A-".:- " ---- ,".&... LA.'..""" .L.. la""IL "..,, ̂.*..... ,.c L..""*I.,.I:,. L:,,:".A "....*a...C 

fnr n r..ffir:nnrl.r 1-m-  naimhar .. P ( I \  m n  hn G r t i l r l  *n tho r.ns&nn Airtr;htitinn 
L U ,  L. UY.,,C",,L,J ,Y,&C ,,u,,,"C, I ' )  1 n \ L ,  -1. "I .,,,"" L" ...U Y Y Y 0 I . Y . .  Y.I1L.."Y..Y.. 

(5.1) 
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Figure S Length distributions for k e d  reflection 
numben in the Case of 012 = ~ 1 2 . 4 .  me dotted 
curve dcnotcs the Gaussian distributions. 

2.9p,, , , , , , , , , , , , , j  
1. 2 1. 3 1. 4 1. 5 

U ?  Figure Y. Scaled mean value of lhe length i(cr2), 

where values of are given in figure 9. As 0% decreases, the area of a billiard plane 
decreases, and thus the length of a periodic orbit corrcsponding to the Same symbolic 
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n a, 

FIpm 10. 'he  number density N'(n) of periodic. . orbits for reflection numben in the case of (12 = 
Plgure 11. 'The relation between fl and (12. 

sf2.4.  

sequence decreases. The cumulative density of the reflection times, U {  primitive 
periodic orbits y with reflection times ny  n) ,  is also very well approximated by 
constant x eRn as shown in figure 10. The results of 13 for different values of 
parameter a2 are shown in figure 11. The relation between a2 and p is equivalent 
to that beween a, and h.  In the paper by Sieber and Steiner 191, the asymptotic 
form eh" of N ( 1 )  is derived from the asymptotic form eon and Gaussian distribution 
of P,,(l), using the stationary phase method, and the identity 

h' = A([- U JG) 
is obtained. As shown in table 3, the diffcrence between h' and h is less than 10%. 
Hence, these results are very consistent and confirm that there are no missing periodic 
orbits. In addition, these asymptotic forms are tested at several values of the system 
parameters. Therefore, they can be expected to be universal for hyperbolic billiards, 
at least dispersing ones. 

Table 3. Comparison between topological entropy h and h'. 

a2 sJ2.1 a f2 .2  nJ2.3 aJ2.4 nJ2.5 sf2.6 ~ 1 2 . 7  

h 145.2 154.7 165.3 172.3 179.6 189.3 191.4 
h' 153.9 167.5 177.3 ' 190.9 197.2 205.9 210.5 

The completely random nature of periodic orbits is revealed not only in their 
length but also their stability exponents, We examined the distribution P'(A) Of the 
logarithms of the absolute values of the eigenvalues which describe the stability of the 
periodic orbits with the reflection times 1% being ruted. It is expected from the result 
for the distribution of the length 1 that the stability exponent is also uncorrelated. 
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Figure U. The stitbility ecpanent disldbutions 
far fixed reflection numbers in lhe ose of a2 = 
rr/2.4. 'The solid curve denotes the Gaussian dis- 
tribulions. 

1. 5 
Flgure U. Sealed mean value of slability exponent 

1. 2 1. 3 1. 4 

a. X ( a 2 ) .  

Figure 12 is the distribution of the stability exponent X of the periodic orbits. As is 
clearly demonstrated in figure 12, the numerical histograms are also well fitted to the 
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Gaussian distribution 
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where values of z which corresponds to each a2 are shown in figure 13. x is 
the Lyapunov exponent of the system which measures the rate of divergence of 
neighbouring orbits or the chaoticity. Therefore, increases as az decreases. 

6. The semiclassicol qunntizutlon 

h 1 1  knowledge about the length spectrum of classical systems enables us to verify 
the validity of the Gutzwiller's semiclassical trace formula which relates the length 
spectrum to the energy spectrum of the wrresponding quantum system [3]. In partic- 
ular, knowing detailed information about each periodic orbit is necessary not only to 
study the convergency of the trace formula, but also to explain the universality of the 
short-range quantum level statistics through the trace formula. In the billiard version 
of Gutzwiller's formula, the density of states is represented only by the geometrical 
information of periodic orbits 

(6.1) 

where J( E) denotes the mean level density, m re resents the mass of a particle 
moving inside the billiard boundary and p = && is its momentum, y denotes 
primitive periodic orbits and k repetition numbers. The phase v7 is the Maslov 
index which is twice the reflection times n7 for Dirichlet boundary conditions. M ,  
represents the linearized Poincare map in the vicinity of y, or the monodromy matrix 
which has eigenvalues (-1)"~ exp(*u,) (u7 > 0)  in the case of dispersing billiards. 

In the chaotic case, the right-hand side of equation (6.1) is not an absolutely 
convergent series since the proliferation rate of the number of periodic orbits over- 
whelms the decay rate of the amplitude factor [U]. The simplest method to make 
it converge is to introduce the convergence factor ie ( e  is real positive ) when the 
timedependent propagator is transformed into the energy-dependent Green function 
in the derivation of Gutmiller's formula. For the left-hand side of equation (6.1), 
this leads to the Lorenzian smoothing &-function, and the damping factor is necessary 
for each term on the right-hand side. As a result, the trace formula has the form 

E 
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Considering N ( 1 )  = constant x exp(h1) and ut = u1, the right-hand side series 
converges if the following condition is satisfied 

'Ib see the validity of the semiclassical result, quantum energy levels are computed 
by solving Schrodinger's equation for Dirichlet boundary condition by means of the 
boundary element method. According to the inequality (6.3) and the preceding 
numerical results which are collected in figures 5, 9 and 13, if z is chosen to be lo5, 
the right-hand side of equation (6.2) in which the energy is less than 10' can converge. 
Results are shown in figure 14. It is safe to say that the semiclassical result, which 
includes the sum of several thousand primitive periodic orbits, is almost convergent 
as far as lower energy level are concerned. This is known by the fact that the shape 
of the curve is unchanged even if the number of periodic orbits &.changed. For each 
parameter value, a remarkable agreement between the semiclassical and quantum 
density of states is observed for the lower 15 levels. In particular, it is surprising that 
a pair of levels with relatively small spacings can be gradually discriminated as the 
number of periodic orbits is increased. 

7. Summary and discussion 

Concluding this article, we summarize our results and pose unsolved problems in 
this area of study. We studied numerically periodic orbits of the dispersing billiards 
consisting of three circular arcs. A partial coding rule together with an efficient 
method of enumerating periodic orbits enables us to obtain a large number of unstable 
periodic orbits. The nearest neighbour spacing distribution of the length spectrum 
obeys Poisson law, and the distribution of length with a fmed bounce number shows 
Gaussian distribution. These results are consistent with those obtained by Sieber and 
Steiner [9]. Furthermore, we discovercd that stability exponents with a fixed bounce 
number also shows Gaussian distribution. In addition, it is important that our results 
do  not depend on the system parameters. These results strongly suggest that the 
length spectrum of hyperbolic billiard systems is highly uncorrelated. We conjecture 
that these properties of periodic orbits investigated in the present numerical analysis 
are universal at least for hyperbolic billiard systems. 

On the other hand, the semiclassical density of states gives very good agreement 
with the exact quantum density of statcs even after an appropriate smoothing. Fhr- 
thermore, as stated in section 6, the resulting semiclassical density of states is an 
almost convergent one. These indicate that a set of periodic orbits should have a 
certain kind of correlation or interrelation bctween them. However, at this stage, 
it is difficult to detect such a subtle correlation, although obtaining fine information 
about long periodic orbits is a necessary task in order to resum Gutmiller's series. 
As is frequently emphasized, the most essential dilliculty in Gutmiller's formula lies 
in its convergency, which is a direct consequence of the cxponcntial proliferation law. 
Sa far, two different approaches have been proposed to Overcome it [18,24]. The 
RiemannSiegel look-alike formula does not rely on particular periodic orbits and is 
expected to work well in all systcms. On the other hand, the cuwature expansion 
method requires the symbolic organization of the periodic orbits, and works well 
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for systems having one-to-one correspondence. between a sequence of codes and a 
periodic orbit [18]. The present dispersing billiard system is slightly complicated as 
mmpared with the three disk problem in the sense that any sequence of code does 
not necessarily have a corresponding periodic orbit. Hence, the present billiard pos- 
sibly becomes a good candidate to check how far such a method works well even in 
the generic parameter regime, and where the complexity of partial mding breaks the 
convergency of resummed series. However, at present, this slight complication seem 
to bring us a great deal of diliiculty in Anding the correlation among periodic or- 
bits. Every effort, for example, to investigate periodic orbits disappearing as a system 
parameter is gradually changed, has been unsuccessful. Moreover, all the periodic 
orbits Seem to contribute equally to the semiclassical density of states. Attempts to 
exchange the order of the summation have not yielded different convergence rates. 
It does not appear that periodic orbits which survive under the change of the system 
parameter play any dominant roles in determining the gross features of the density of 
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states. Nevertheless, there should be correlation between periodic orbits in order that 
Gutmiller's formula can generate individual eigenstates. In particular, the presence 
of correlation is a necessary condition for the correct average density being given by 
the summation of very long orbits [25]. These unsolved questions must be dealt with 
in the future. 
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