IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Periodic orbits and semiclassical quantization of dispersing billiards

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 4595
(http://iopscience.iop.org/0305-4470/25/17/019)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:58

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math, Gen. 25 (1992) 45954611, Printed in the UK

Periodic orbits and semiclassical quantization of dlspersmg
billiards

Takahisa Harayamat and Akira Shudot

t Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169,
Japan

1 Yukawa Institute for Theoretical Physics, Kyoto University, Kyolo 606, Japan

Received 26 November 1991, in final form 30 March 1992

Abstract. Periodic orbits in a dispersing billiard system consisting of three circular
arcs are studied numerically by using a partial coding rule together with an efficient
method for enumerating periodic orbits on the real billiard plane. By examining several
statistical measures, it is shown that the length spectrum and the stability exponents are
highly uncorrelated. The validity of the semiclassical trace formula is also tested, and a
remarkable agreement of the semiclassical and quantum density of states is oblained at
least for aboul the lower 15 levels.

1. Introduction

Dynamical systems with more than one degree of freedom demonstrate surprisingly
complicated behaviour, an understanding of which is well developed at least in clas-
sical mechanics. Recent advance in the study of classical dynamical systems reveals
that there are distinctive or hierarchical classes such as ergodicity, mixing and the
Bernoulli property, even within systems showing chaotic behaviour [1}. On the other
hand, a full understanding of the quantum system whose classical counterpart displays
chaos is far from accompiished. Even when we restrict ourseives to strongiy chaotic
or ergodic systems where no KaM tori or islands exist in the phase space, we have
not yet found a complete answer to various conjectures regarding the universality of
level statistics, characteristic nature of wave functions, and so on [2]. Hence, before
analysing generic Hamiltonian systems with complicated phase space structure, we
should investigate the cxtremely chaotic case as a first step.

The most naive applum.n io this }nuu}uu would be to find a clear translation
rule from the language of classical mechanics to that of quantum mechanics. For
this purpose, the semiclassical method usually plays an important role and provides
us with a powerful tool. In particular, Gutzwiller’s trace formula which relates a set
of classical periodic orbits including their stability to the quantum energy levels, has
been a central subject in the analysis of this issue [3]. However, due to our lack of
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it is difficult to get a clear perspective on the quantum-—classical correspondence in
strongly chaotic systems. To attack this kind of difficulty, there are be two different
approaches, One is to obtain analytically a complete set of periodic orbits by choosing
an appropriate model [4-7), and the other is to calculate periodic orbits numerically
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by brute force [8,9]. The drawback of the former approach is that due to the
specificity of the model system, the resulting length spectrum often becomes non-
typical, although it gives a precise asymptotic behaviour that we really know. Since
the numerical calculation can handle only finite data, the latter approach cannot
generate all periodic orbits, but it keeps the generality of the system.

In the present article, we will take the latter approach by studying a dispersing
billiard problem [10]. The advantage of the billiard problem is that the classical prop-
ertics are easily controlled by designing the shape of the boundary, and that periodic
orbits can be obtained by geometrical speculation, In particular, our dispersing billiard
system introduced in section 2 has several system parameters which do not change
the category of classical dynamics. It enables us to explore universal aspects of peri-
odic orbits independent of a special shape of the boundary. In addition, as is shown
in section 3, our dispersing billiards have a rather good correspondence between a
sequence of codes and a periodic orbit, which markedly excludes the possibility of
missing periodic orbits. Combining this nice property with the efficient numerical
method proposed below, we have succeeded in obtaining several thousand periodic
orbits, and examined their statistical properties from various viewpoints. Using these
periodic orbits, we also tested the validity of the semiclassical trace formula for this
type of dispersing billiard and discuss the problems posed by the present analysis.

2. The dispersing billiards

The billiard problem in classical mechanics is the study of the motion of a particle
which moves freely within a region D with a constant energy and satisfies the law of
reflection at the boundary 8 2, the angle of incidence being equal to the angle of re-
flection. The corresponding quantum mechanical problem is the study of eigenvalues
and eigenfunctions of the time-independent Schrédinger equation which describes the
stationary states of a particle in D

h?

%ng(q) = FE(q) qg=(z,y)€D 2.1)
with Dirichlet boundary condition,

¥ig) =0 gedb. 2.2)

The dispersing billiard which we shall be interested in here is a class of billiard
systems having boundaries with curvature measured by inner normal positive every-
where. The boundary of our model billiards consists of three circular arcs I'y, I'; and
T, as shown in figure 1. Each arc intersects at vertices A, B and C of a triangle, and
the centre of each circle, which is not shown in figure 1, is given as the vertex of an
equilateral triangle. The independent geometrical parameters which we can control
are the length R of the base, the base angles ¢y, &g, of a triangle ABC, and the
base angles a;, o, and «, of the equilateral triangles. The reasons for employing
this type of dispersing billiard are mainly twofold; (1) Several rigorous results con-
cerning the corresponding classical dynamics have already been derived. (2) Generic
or universal propertics can be extracted by studying scveral sets of system parame-
ters systematically. Our main aim in this paper, therefore, is to analyse properties



Periodic orbits and semiclassical quantization of dispersing billiards 4597
A

Figure 1. Schematic picture of a dispersing billiard
system whose boundary consists of three circular
arcs.

of periodic orbits and the validity of the semiclassical theory of such classically well
examined systems in a systematic manner, which has never been done before.

This shape of billiard includes several characteristic cases as particular sets of
system parameters. For example, if the circular arcs meet tangentially, the power
law decay of the auto-correlation function for the velocity of classical trajectories is
observed [11], and if the radius of the three circles are infinite, it becomes a polygonal
billiard system which does not show exponential instability despite its non-integrability
[12,13]. However, our present concern is not to study such special classes, but to ex-
amine a generic hyperbolic case not having an anomalous nature in classical dynamics.
As is rigorously shown, this class of dispersing billiards have ergodic property ang is a
K system [14]. Furthermore, it is isomorphic to the Bernoulli shift [15]. This means
that the Lyapunov exponent of the system is positive. An important point is that
the method for constructing the Markov partition has been obtained, and it shows
that a countable but infinite number of partitions are necessary [16,17]. 1t makes
it difficult to code periodic orbits using a finite number of symbols, which prevents
us from directly applying the curvature expansion method proposed by Cvitanovic
and Eckhardt [18]. As is naturally expected from the properties mentioned above,
the number of periodic orbits proliferates exponentially. There is actually a rigorous
proof which shows that both the lower and upper bound of such a proliferation rate
is given as an exponential function [17).

3. Coding of periodic orbits

The most favourable point of our billiard system is that there exists a rather simple
way of coding each periodic orbit, which considerably diminishes our labour finding
periodic orbits, and ensures the upper bound of the number of periodic orbits when
the bounce number is given. Following the argument made by Morita [19], we here
show that each periodic orbit + can be coded uniquely by the symbolic sequence
£(7) € I, where £ = {£ = (§; j';?.om_e I_I;?_,_OQ{O,I,Z] | &; # &4+ for any j},
and we represent the bounce at each circular arc T'y, [}, and I', by the symbol 0, 1
or 2.

First consider an orbit which reflects at a point P on the arc Iy, and then reflects
at a point P, on the arc I';. Define r as the distance between the points P and
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a vertex C measured along the arc I'; and ¢ as the angle between the inner unit
normal vector and the momentum vector going out from the point P,. r, and ¢,
are defined in the same manner. From geometric consideration, one can obtain

[ Wy .- ) XY

cos ¢, cos ¢

where r is the Euclidean distance between the points P and P, and k(r) is the
geometric curvature of the arc I' at the point P. For the consecutive reflections,
(rosPo)ts (r1,01)s. .y (7, D, ), We oObtain

dr, _ dr, dr,_, dr; _ , COS qbo

dry  dr,_,dr,_, dr, cosqb H 6 3-2)
where

o 7 d¢J

b; = [1 + c0s & ( + k(r;) (3.3)
Similar gcometrical consideration yields

dé, dé 1!

Ty = Klrs) Fcos |7+ cos b o+ k() - 34
d¢;/dr; (j = 1,2,...,n) is non-negative if d¢,/dr, > O is satisfied. Since
cos ¢; > 0 and k(r;) > 0, there exists # > O such that

21417 3J=0,1,...,n—-1. (3.5)

Hence, in order to make two different orbits which are initially on the same arc trace
the same history of codes within n steps, the following relation must be satisfied

r(P,P') <l cos ¢ |71 (1 4 )" 3:6)

where »( P, P’) is the initial distance between different points P and P’ and ! is the
minimum arc length. Because we are now concerned only with periodic orbits, this
inequality leads us directly to the conclusion that the order of reflections at the arcs,
or the sequence of codes, determines a unique periodic orbit. Of course, in this ar-
gument, it is implicitly assumed that there exist no periodic orbits passing tangentially
a point on the arc. Even when such periodic orbits exist, a slight deformation of
the boundary changes them into non-tangent ones. It ensures the uniqueness shown
here. At this point, we should remark that this correspondence between a sequence
of codes and a periodic orbit on the billiard plane is not necessarily one-to-one,
while there exists a strict one-to-one correspondence between them in the case of
non-compact dispersing billiards [20]. In calculations performed below, we actually
found many sequences of codes which do not have a corresponding periodic orbit.
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4, The method of finding periodic orbits

The procedure of searching for periodic orbits is divided into two parts. The first
task is to generate all the symbolic sequences without omission, and the second
one is to find the corresponding periodic orbits on the real billiard plane. One
effective method for generating the symbolic sequence £(+) is as follows: first we
ptepare the binary expressmn for 2" integers, K = 0,1,...,2" -1, ie. K =
ay x2* 4 ay x2°7 4. .+ a, x 25 and then generate the sequence o0y...0,
by the rule given as o; = E = 1(a + 1) (mod 3). By construction, this sequence
satisfies the prohlbmon rule as o; # o, ,. The second step is to discard the sequences
not satisfying the condition o, = o, and finally the sequences obtained by the
permutation of others or the repetition of smaller periodic sequences are excluded.

Once a symbolic sequence o,0, ... o, is given, the remaining procedure to obtain
periodic orbits on the reai biiliard piane is to find a ciosed polygon whose vertices
are on the corresponding arcs, and at the same time- its perimeter is the smallest of
all possible configurations. The reason for the second requirement is that since the
curvature of the boundary is everywhere positive, there are no conjugate points on
the billiard table. It is, of course, equivalent to the law of reflection. More precisely,
a desirable polygon must satisfy the following set of equations

4

3 (Leseses + Loye,,) =0 @
where L, .. is the distance between the points F, and P, and r, is the
distance between the point P, and the point C measured afong the boundary
These equations are usually so]ved by a Newtonian method [21]. However, in the
present model, there exists a number of spurious solutions which satisfy the condition
of extremum, but do not yicld true periodic orbits. They correspond to stationary
polygons, at least one of whose vertices is outside the billiard boundary while each
vertex of such stationary polygons is located on one of the three circles constituting
the boundary These stationary polygons satisfy the minimax condition instead of the
minimum one. Therefore, unless initial ngmr,s are ln(:ldentallv located near a true

solution, much computing time is requlred to get a final solution. To avoid this, we
use the following technique.

We first put a set of points {PSP} on the correspending arc Lq, The points
P(O) and P(o) being fixed, Pc(,ll) is determined by solving equation (4.1) for the case
= 1 using a Newtonian method. As is shown in figure 2, because PS)) always
exists on the arc XY, solving equation (4.1) s not difiicult. In the same manner,
X% and PV being fixed, P{!) is determined. This procedure is repeated until
P(l) is determined. By consndenng this procedure as one step, we make the next-
step optimization starting from the precedmg configuration {P(‘)}, and then obtain

a set of more optimized points {Pa )} As points {P(")} are always located on
the hmmdnru of hilliards, or three circular arcs, ane does not suffer from spurious
solutions mennoned above, From the preceding argument, the converged points
P(“’) =lim,_ . Prf.:.‘) form periodic points which correspond to a given sequence of

codes {o,}. In our experiments, when the maximal displacement between successive
steps, ie. max, | F. (") “"” | is smaller than ¢ = 10~°, we judge the points
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{Pc(,;‘)} to have converged. In actual computations, the upper limit of the step number
n i set at 1000. In several cases where there exists no periodic orbit corresponding
to the symbolic sequence, the points P, and P,,,, converge slowly to the same
point at which the arcs I', and T, _ intersect one another. Therefore, we regard
such a symbolic sequence as having no corresponding periodic orbit, and we give the
criterion for halting our search as L < 1075,

v i+1

Fe Figure 2. A stationary point P{}) on the arc XY.

5. The property of periodic orbits and its universality

Using the method explained in the preceding section, we examined several cases by
changing the value of an angle «, from 12« to 18« with other system parameters
R = 0.01, ¢g; = 37, ¢ = 457, g = g7 and «; = Zx being fixed. The
minimum reflection number of periodic orbits in this billiard system is 3, and the
maximal period we searched is 20. Within the above criterion, the percentage of
symbolic sequences whose convergency cannot be judged is approximately 1%, and
several thousand primitive periodic orbits were eventually obtained. The result is
tabulated in table 1. There are, in general, two types of periodic orbits; the first
type is a class of orbits which retrace their own trajectories in the reverse direction
before they return back to their initial configuration. The second type are ones not
tracing their own trajectories before they close. Therefore, the sequence of codes
for periodic orbits of the first type is necessarily symmetric about a central code.
An example of this is fllustrated in figure 3(c). On the other hand, the sequence
of codes for the second type do not have such a symmetry. Typical examples are
actually presented in figures 3(a) and 3(b). Using the present method of generating
the sequence of codes and for the periodic orbits of the second type, two different
codes, either one of which is reversed to give the other, yield periodic orbits with the
same topology on the billiard plane. In order to avoid the double-counting of periogic
orbits with the same topology, these pairs of periodic orbits of the second type are
identified and the number of periodic orbits with different topology are listed in table
2. Because the curvature of I, increases as «, decreases, neighbouring orbits diverge
more rapidly due to the reflection at this boundary T',, and thus the system exhibits
stronger chaos. This means that the varicty of periodic orbits with different topology,
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Figure 3. Examples of periodic orbits, each of
which respectively corresponds to the symbolic se-

quence:

@ {1,2,0,1,2,0,1,2,0,1,2,0,1,0}.
®) {1,2,0,1,2,0,1,2,0,2,0,2,1,0}.
© {1,2,0,1,2,0,1,0,2,1,0,2,1,0}

which correspond to the symbolic sequences not having corresponding periodic orbits
at larger values of a,, is increased. This is the reason why in table 1 the number of
periodic orbits increases as «, decreases.

For the latter set of primitive orbits shown in table 2, we first examined the
cumulative density of length spectrum, N(I) = #{ primitive periodic orbits v with
length I, < I}. The result is shown in figure 4. In the present procedure, periodic
orbits are obtained in order of the reflection number, while the order of reflection
number is not necessarily the same as that of their length. Accordingly, to observe the
precise behaviour of the cumulative density, we employed the periodic orbits ranging
from 50 to 8000 in order of their length. In this range, there were no omissions of
periodic orbits as the order of length. As is expected from the result of the systems
with a finite number of Markov partitions [19,20], N(!) can be approximated very
well by the exponential curve asymptotically. Figure 4 provides clear evidence for
this prediction. Values of h which is the exponent of the exponential distribution,
N({) = constant x e/, are shown in figure 5. In this expression, h represents
topological entropy which measures the variety of orbits. From the relation between
the value of o, and the number of periodic orbits, we can understand that in figure 5
h increases as «, decreases. This exponential proliferation law is of course the
crudest information about the length spectrum, and it directly reflects the chaoticity
of classical dynamics. However, except for the work of Sieber and Steiner [9), little is
known regarding fluctuation properties of the length spectrum for the planer billiard,
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Table 1. Numbers of periodic orbits,

n wf2.1 /2.2 w/2.3 wf2.4 wf2.5 /2.6 ®f2.7
3 2 2 2 2 2 2 2
4 3 3 3 3 3 3 3
5 6 6 6 6 6 6 6
6 1 4 5 7 8 8 8
7 6 10 10 10 14 16 16
8 11 13 17 17 18 20 22
9 20 22 26 36 36 3B 38
10 25 36 46 60 61 62 68
1 50 66 82 92 100 110 122
12 82 102 135 151 167 192 205
13 136 188 248 280 318 350 378
14 228 311 406 492 569 613 676
15 368 528 706 842 1014 1118 1208
16 601 895 1223 1498 1780 1992 2186
17 1022 1568 2158 2698 3176 3606 3998
- 18 1710 2701 3751 4819 5685 6477 7236
19 2888 4638 6592 8598 10294 11782 13040
20 4850 7984 116065 15226 18525 21365 23735

12009 19077 27021 34857 41776 47760 52947

Table 2. Numbers of periodic orbits (orbits without lime reversal symmetry identiied).

n wf2.1 wf2.2 n/2.3 wf2.4 w/2.5 /2.6 n/2.7
3 1 1 1 1 1 1 1
4 3 3 3 3 3 3 3
5 3 3 3 3 3 3 3
6 1 4 5 7 8 8 3
7 3 5 5 5 7 8 8
8 7 9 11 11 12 14 16
9 10 11 13 18 18 19 19
10 19 26 33 41 42 43 46
11 25 13 41 46 50 55 61
12 49 62 79 89 9 115 124
13 68 94 124 140 159 175 189
14 133 181 233 279 323 351 387
15 184 264 353 431 " 507 559 604
16 330 488 664 8f1 960 1074 1180
17 511 784 1079 1349 1588 1803 1999
18 914 1432 1975 2529 2982 3400 3794
19 1444 2319 3296 4299 5147 5891 6520
20 2521 4136 5984 7829 9519 10980 12193
6226 9855 13902 17891 21428 24502 27155

If we wish to understand, by using Gutzwiller's trace formula, the universality of
the quantum spectrum from that of the classical length spectrum, we must know
more detailed information with respect to the generic features of the periodic orbits.
As mentioned in the introduction, the advantage of our dispersing billiard is that a
generic property of the length spectrum can be inferred by changing several system
parameters in various ways.
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As a first step in exploring such a generic feature, we studied the nearest neighbour
spacing distribution of the length spectrum. By following the procedure developed in
the study of quantum energy spectra, we use the averaged cumulative density obtained
numerically to unfold the original spectrum. The result is shown in figure 6. The
numerical histograms agree surprisingly well with the exponential curve, or Poisson
distribution, which implies that the length of periodic orbits are uncorrelated at least
within the short range. Every set of system parameters we have studied yield a
Poisson distribution as shown in figure 6 though the length Spectrum itseif depends
on the system parameter and is quite different from one to another. Therefore, we
conjecture that this property is universal for all hyperbolic billiard systems.

In order to check, from the statistical viewpoint, how far the length spectrum
of strongly chaotic systems is corrclated or uncorrelated, we must know information
about higher-order correlations for the length spectrum. In the analysis of the energy
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Figure 6 Nearest neighbour spacing distribution Figure 7. Spectral rigidity A; in the case of oy =
P(s) for the length spectrum. The broken curve T/2.4.
represents the Poisson distribution P(g) = e,

level statistics, the quadratic long range correlation, such as Aj- or X, -statistics,
is most familiar and it is easily accessible by numerical computations. To test the

quadratic correlation of the length spectra, we here examined the spectral rigidity A,
defined by

1 rr+if2 .
Ay(L,z) = 7 Win jx-L{2 [n(e) - Ae — B]“de

where n{¢) is the unfolded cumulative density of states. If a sequence does not have
any correlation, Ay statistics should fit the straight line with the gradient 1/15. In
the energy level scquence of classically integrablc systems it saturates in the long
£ regime. The reason for this saturation of the energy level sequence is that there
exists a minimum length for periodic orbits {22]. On the other hand, as is actually
shown in figure 7, numerical examinations demonstrate that the length spectrum of
periodic orbits shows no sign of saturation, but it fits the straight line predicted
for completely uncorrelated sequences well, For the cases with different system
paramcters no noticeable difference is found. Therefore, we expect that there is no

¢l thalina hilliaed
tlual..ua.ub correlation between the luubtu apu..u um of u_'y'pCi'uuuu siniarag a]muum

Another universality we expect is the distribution P, ({) of the length of the
primitive periodic orbits with the reflection number n being fixed. Because nearest
neighbour spacings of the length spectrum have no correlation and the length of { of
a periodic orbit increases as the reflection times n increases, ! can be expected to be
randomly distributed around the mean length dependent on n. As shown in figure 8,

for a sufficiently large number n, P, () can be fitted to the Gaussian distribution

P =t exp(———” . f’”z) (5.1)
2rng

2a?n
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where values of [ are given in figure 9. As a, decreases, the area of a billiard plane
decreases, and thus the length of a periodic orbit corresponding to the same symbolic
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sequence decreases. The cumulative density of the reflection times, ${ primitive
periodic orbits v with reflection times n. < n}, is also very well approximated by
constant x e?* as shown in figure 10. The results of @ for different values of
parameter ¢, are shown in figure 11. The relation between a, and 8 i equivalent
to that between o, and h. In the paper by Sieber and Steiner [9], the asymptotic
form e*'! of N(!) is derived from the asymptotic form e and Gaussian distribution
of F, (1), using the stationary phase method, and the identity

is obtained. As shown in table 3, the difference between A’ and h is less than 10%.
Hence, these results are very consistent and confirm that there are no missing periodic
orbits. In addition, these asymptotic forms are tested at several values of the system
parameters. Therefore, they can be expected to be universal for hyperbolic billiards,
at Jeast dispersing ones.

Table 3. Comparison between topological entropy h and R’

oy wf2.1 /2.2 w/2.3 w/2.4 /2.5 /2.6 w/2.7

h 1452 154.7 165.3 1723 179.6 189.3 191.4
b 1539 167.5 1.3 190.9 197.2 2059 2105

The completely random nature of periodic orbits is revealed not only in their
length but also their stability exponents. We examined the distribution P(A) of the
logarithms of the absolute values of the eigenvalucs which describe the stability of the
periodic orbits with the reflection times n being fixed. It is expected from the result
for the distribution of the length [ that the stability exponent is also uncorrelated.
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Figure 12 is the distribution of the stability exponent X of the periodic orbits. As is
clearly demonstrated in figure 12, the numerical histograms are also well fitted to the
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Gaussian distribution

Pl(A) =

_- 5‘”)2) 5.2)

1
———ex i
V2rno! P ( 20/n

where values of A which corresponds to each o, are shown in figure 13. X is
the Lyapunov exponent of the system which measures the rate of divergence of
neighbouring orbits or the chaoticity. Therefore, A increases as a, decreases.

6. The semiclassical quantization

Full knowledge about the length spectrum of classical systems enables us to verify
the validity of the Gutzwiller’s semiclassical trace formula which relates the length
spectrum to the energy spectrum of the corresponding quantum system [3]. In partic-
ular, knowing detailed information about each periodic orbit is necessary not only to
study the convergency of the trace formula, but also to explain the universality of the
short-range quantum level statistics through the trace formula. In the billiard version
of Gutzwiller's formula, the density of states is represented only by the geometrical
information of periodic orbits

5 1 = ml 1 o (pl, v
zﬂ:é(E—En)zd(E)+ﬁRe¥; v exp[lk(%_%r)]

P Jl2—TrME |

(6.1)

where d( E) denotes the mean level density, m represents the mass of a particle
moving inside the billiard boundary and p = V2m£E is its momentum, -y denotes
primitive periodic orbits and & repetition numbers. The phase v, is the Maslov
index which is twice the reflection times n. for Dirichlet boundary conditions. M,
represents the linearized Poincaré map in the vicinity of +, or the monodromy matrix
which has eigenvalues (—1)"~ exp(=£u,) (u, > 0) in the case of dispersing billiards.
In the chaotic case, the right-hand side of equation (6.1) is not an absolutely
convergent series since the proliferation rate of the number of periodic orbits over-
whelms the decay rate of the amplitude factor [23]. The simplest method to make
it converge is 1o introduce the convergence factor ie (e is real positive ) when the
time-dependent propagator is transformed into the energy-dependent Green function
in the derivation of Gutzwiller’s formula. For the left-hand side of equation (6.1),
this leads to the Lorenzian smoothing §-function, and the damping factor is necessary
for each term on the right-hand side. As a result, the trace formula has the form

Y EE
7 (E-E ) +¢

n
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Considering N(!) = constant x exp(hl) and u, = wl, the right-hand side series
converges if the fellowing condition is satisfied

o> 2] _g]ﬂ\/%[h-g}. 63)

To see the validity of the semiclassical result, quantum encrgy levels are computed
by solving Schrodinger’s equation for Dirichlet boundary condition by means of the
boundary element method. According to the inequality (6.3) and the preceding
numerical results which are collected in figures 5, 9 and 13, if € is chosen to be 105,
the right-hand side of equation (6.2) in which the energy is less than 107 can converge.
Results are shown in figure 14. It is safe to say that the semiclassical result, which
includes the sum of several thousand primitive periodic orbits, is almost convergent
as far as lower energy level are concerned. This is known by the fact that the shape
of the curve is unchanged even if the number of periodic orbits is.changed. For each
parameter value, a remarkable agreement between the semiclassical and quantum
density of states is observed for the lower 15 levels, In particular, it is surprising that
a pair of levels with relatively small spacings can be gradually discriminated as the
number of periodic orbits is increased.

7. Summary and discussion

Concluding this article, we summarize our results and pose unsolved problems in
this area of study. We studied numerically periodic orbits of the dispersing billiards
consisting of three circular arcs. A partial coding rule together with an efficient
method of enumerating periodic orbits enables us to obtain a large number of unstable
periodic orbits. The nearest neighbour spacing distribution of the length spectrum
obeys Poisson law, and the distribution of length with a fixed bounce number shows
Gaussian distribution. These results are consistent with those obtained by Sieber and
Steiner [9]. Furthermore, we discovercd that stability exponents with a fixed bounce
number also shows Gaussian distribution. In addition, it is important that our results
do not depend on the system parameters. These results strongly suggest that the
length spectrum of hyperbolic billiard systems is highly uncorrelated. We conjecture
that these properties of periodic orbits investigated in the present numerical analysis
are universal at least for hyperbolic billiard systems.

On the other hand, the semiclassical density of states gives very good agreement
with the exact quantum density of states even after an appropriate smoothing. Fur-
thermore, as stated in section 6, the resulting semiclassical density of states is an
almost convergent one. These indicate that a set of periodic orbits should have a
certain kind of correlation or interrelation between them. However, at this stage,
it is difficult to detect such a subtle correlation, although obtaining fine information
about long periodic orbits is a necessary task in order to resum Gutzwiller's series.
As is frequently emphasized, the most essential difficulty in Gutzwiller’s formula lies
in its convergency, which is a direct consequence of the exponential proliferation law.
So far, two different approaches have been proposed to overcome it [18,24]. The
Riemann-Siegel look-alike formula does not rely on particular periodic orbits and is
expected to work well in all systems. On the other hand, the curvature expansion
method requires the symbolic organization of the periodic orbits, and works well
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for systems having one-to-one correspondence between a sequence of codes and a
periodic orbit [18]. The present dispersing billiard system is slightly complicated as
compared with the three disk problem in the sense that any sequence of code does
not necessarily have a corresponding periodic orbit. Hence, the present billiard pos-
sibly becomes a good candidate to check how far such a method works well even in
the generic parameter regime, and where the complexity of partial coding breaks the
convergency of resummed series. However, at present, this slight complication seems
to bring us a great deal of difficulty in finding the correlation among periodic or-
bits. Every effort, for example, to investigate periodic orbits disappearing as a system
parameter is gradually changed, has been unsuccessful. Moreover, all the periodic
orbits seem to contribute equally to the semiclassical density of states. Attempts to
exchange the order of the summation have not yiclded different convergence rates.
It does not appear that periodic orbits which survive under the change of the system
parameter play any dominant roles in determining the gross features of the density of
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states. Nevertheless, there should be correlation between periodic orbits in order that
Gutzwiller’s formula can generate individual eigenstates. In particular, the presence
of correlation is a necessary condition for the correct average density being given by
the summation of very long orbits [25]. These unsolved questions must be dealt with
in the future,
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